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Abstract. Our goal for the last month of the course is to introduce the con-

cept of compact Riemann surfaces, and glimpse their role in the theory of
meromorphic functions. This is an extremely advanced topic for high school

students, so we focus on understanding the definitions. We begin by reviewing

what we have already seen about topological spaces, then define connectedness
and compactness sufficiently for our purposes. We then move on to locally Eu-

clidean spaces, manifolds, Riemann surfaces, and genera. Finally, we discover

the Riemann-Hurwitz formula for discovering the genus of a ramified cover.

1. Topology

Definition 1. A topological space is a set X together with a collection of subsets
T ⊂ P(X) such that

(T1) ∅ ∈ T and X ∈ T;
(T2) U ⊂ T ⇒ ∪U ∈ T;
(T3) U ⊂ T and U finite ⇒ ∩U ∈ T.

The collection T is called a topology on X.
A subset A ⊂ X is called open if A ∈ T, and is called closed if X rA ∈ T.

The set of real numbers and the set of complex numbers are topological spaces,
with the definitions of open sets we have already given. Also, Rn is a topological
space, where the open sets are unions of open balls. We outline this next.

Definition 2. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be points in Rn. The
distance from p to q is

d(p, q) =
√

(p1 − q1)2 + · · ·+ (pn − qn)2.

Let r ∈ R, r > 0. The ball of radius r about p is

Br(p) = {q ∈ Rn | |p− q| < r}.
Let U ⊂ Rn. We say that U is open if for every u ∈ U there exists ε > 0 such

that Bε(u) ⊂ U . The collection of open subsets of Rn is a topology on Rn, making
Rn a topological space.

For the purposes of topology, we view C as R2, with the extra structure of
complex multiplication.
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2. Subspaces

Any subset of a topological space is naturally a topological space, with the
subspace topology.

Definition 3. Let X be a topological space and let A ⊂ X. A subset W ⊂ A
is called relatively open if there exists a set U ⊂ X which is open in X such that
W = A ∩ U . The set of relatively open subsets of A forms a topology on A, called
the subspace topology.

Example 1. Let I = [0, 1]. This is a subspace of R. Let U = (−0.5, 0.5); this is
an open set in R. Thus the set W = U ∩ I = [0, 0.5) is relatively open in I. If we
view I as a topological space, then W is an open set in I.

Next, we define some standard topological spaces; each is endowed with the
subspace topology inherited from the appropriate version of Rn. We may think of
these as building blocks to form new topological spaces.

The open n-ball is
Bn = {q ∈ Rn | d(0, q) < 1}.

The closed n-ball is
Dn = {q ∈ Rn | d(0, q) ≤ 1}.

The n-sphere is
Sn = {q ∈ Rn+1 | d(0, q) = 1}.

So, B1 = (−1, 1) is an open interval and D1 = [−1, 1] is a closed interval. Also,
S1 is a circle, but D2 is a closed disk.

3. Classification of Points

The definitions of neighborhood, deleted neighborhood, closure point, interior
point, boundary point, accumulation point, isolated point, all carry over from our
previous discussions virtually unchanged into this more general context, as do the
concepts of the closure, interior, and boundary of a set. We review this now.

Definition 4. Let X be a topological space, and let p ∈ X. A neighborhood of p
is a set which contains an open set which contains p. A deleted neighborhood of p
is a set of the form N r {p}, where N is a neighborhood of p.

Let A ⊂ X. We say that p is a closure point of A if every neighborhood of p
intersects A. We say that p is a interior point of A if there exists a neighborhood
of p which is contained in A. We say that p is a boundary point of A if every
neighborhood of p intersects A and X rA. We say that p is an accumulation point
of A if every deleted neighborhood of p intersects A. We say that p is an isolated
point of A if there exists a neighborhood U of p such that A ∩ U = {p}.

The closure of A, denoted A, is the set of closure points of A. The interior of
A, denoted A◦, is the set of interior points of A. The boundary of A, denoted ∂A,
is the set of boundary points of A.

We say that A is discrete if every point in A is isolated.
Let B ⊂ A. We say that B is dense in A if B = A.
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4. Bases and Subbases

Let X be any set; this set admits many different collections of subsets which
satisfy the axioms of a topology If we have a collection of different topologies on
X, we attempt to make a new topology on X by declaring that a given subset is
open if and only if if is a member of each of the topologies in the collection. It is
relatively easy to show that what we obtain in this manner is again a topology on
X. We state this as a proposition.

Proposition 1. Let X be a set. The intersection of topologies on X is a topology
on X.

We use this to produce the easiest definition of generated topologies; we wish
to define the topology generated by a collection of subsets of X to be the coarsest
(that is, with the fewest open sets) topology on X such that each of the sets in our
collection is open.

Definition 5. Let X be a set and let C be a collection of subsets of X. The topology
generated by C is the intersection of all topologies on X which contain C.

The topology generated by C may to constructed in stages as follows. First,
take the collection of all finite intersections of all the sets in C. Then, take the
collection of all possible unions of sets obtained in above. There are definitions for
these things.

Definition 6. Let X be a set and let T be a topology on X.
A subbasis for T is a collection of subsets of X which generated the topology T.
A basis for T is a collection of subsets of X such that the collection of all possible

unions of these subsets is T.

For example, the collection of open interval of finite length is a basis for the
standard topology on R; also, the collection of all open disks in the complex plane
is a basis for the standard topology on C.

5. Discrete and Trivial Topologies

Definition 7. Let X be a set.
The power set of X, denoted P(X), is the collection of all subsets of X.
The discrete topology on X is the topology in which every subset of X is open;

that is, T = P(X). Thus the discrete topology is the topology generated by the
collection of singleton sets.

The trivial topology on X is the topology in which the only open sets are the
empty set and the whole space; that is, T = {∅, X}. Thus the trivial topology is
the topology generated by the empty collection.
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6. Continuity

Continuity and convergence may now be defined on any topological space.

Definition 8. Let X and Y be topological spaces, and let f : X → Y . We say
that f is continuous at x ∈ X if, for every neighborhood V of f(x), there exists
a neighborhood U of x such that f(U) ⊂ V . We say that f is continuous if it is
continuous at every point in the domain.

Proposition 2. Let X and Y be spaces and f : X → Y . Then f is continuous if
and only if the preimage of every open set in Y is open in X.

Proof. We prove both directions of the implication.
(⇒) Suppose that f is continuous at every point in X. Let V ⊂ Y be open and

let U = f−1(V ); we wish to show that U is open in X.
For every x ∈ U , V is a neighborhood of f(x), so there exists an open neigh-

borhood Ux of x such that f(Ux) ⊂ V . But then Ux ⊂ U , and U is the union
of such sets; thus U is open, and f is continuous. Suppose that f is continuous,
and let x0 ∈ X. Let V be a neighborhood of y0 = f(x0). Then U = f−1(V ) is a
neighborhood of x0 which maps into V .

(⇐) Conversely, suppose that the preimage of every open set in Y is open in X,
and let x0 ∈ X. We wish to show that f is continuous at x0.

Let V be a neighborhood of y0 = f(x0). Then U = f−1(V ) is a neighborhood
of x0 which maps into V . �

Definition 9. Let X and Y be topological spaces and let f : X → Y . We say
that f is open if the image of every open set in X is open in Y . We say that f is
bicontinuous if f is open and continuous.

Example 2. Continuous functions are characterized by having at least enough of
open sets in the domain, and open maps are characterized by having a at least
enough open sets in the range.

Let X be any set. Let XT and XD denote the topological space X together with
the trivial or discrete topology, respectively. Let f(x) = x be the identity map on
X.

Then f : XT → XD is open but not continuous, because the range has more open
sets than the domain. On the other hand, f : XD → XT is continuous, but not
open, because the domain has more open sets than the range.

Definition 10. Let X and Y be topological spaces. A homeomorphism from X to
Y is a bijective continuous function f : X → Y whose inverse is also continuous.
We say that X and Y are homeomorphic if there exists a homeomorphism between
them.

A homeomorphism between topological spaces preserves all of the features of the
domain which can be described exclusively using open sets; we may call such fea-
tures “topological”. Because of this, we view two topological spaces as equivalent,
or essentially the same, if they are homeomorphic. However, a space may have ad-
ditional structure beyond its topology, which is not preserved by homeomorphism.
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7. Product Topology

Let X and Y be topological spaces; the set X × Y is the set of all ordered pairs
of elements from X and Y :

X × Y = {(x, y) | x ∈ X, y ∈ Y }.
We wish to put the “most natural” topology we can on X×Y . Certainly, whatever
we choose in this regard should conform with what we already experience with
subsets of Rn.

For example, R × R = R2 is the standard cartesian plane. let I = [0, 1] ⊂ R be
the closed unit interval. Then I × I is a square, and its topology should be that
which it inherits as a subspace of R2. Let’s list some more examples.

• I × I is a square;
• I × S1 is a cylinder;
• S1 × S1 is a torus (the surface of a donut);
• S1 ×D2 is a solid torus (the entire donut).

Mathematicians think of these things in terms of mappings. The most primitive
useful mappings on X × Y are the projections.

Let pX : X × Y → X be given by (x, y) 7→ x and pY : X × Y → Y be given by
(x, y) 7→ y. These are called projections onto X and Y , respectively.

We wish to define the topology on X × Y to be the coarsest topology on X ×
Y such that the projection maps are continuous. What is required is that the
preimages of open sets are open. So, for pX to be open, we require that if U is open
in X, the p−1X (U) = U × Y is open in X × Y . A similar statement may be made
regarding pY . Thus, a subbasis for the topology we seek is the collection of sets of
the form U × Y and X × V , and a basis for the topology is the collection of sets of
the form U × V , where U is open in X and V is open in Y .

Definition 11. Let X and Y be topological spaces. The product topology on X×Y
is the topology generated by sets of the form U × Y and X × V , where U is open
in X and V is open in Y .
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8. Quotient Topology

Let X and Y be topological spaces. We know that a function f : X → Y is
continuous if and only if the preimage of an open set in Y is open in X. So, in
some sense, Y has at least as many open sets as it needs to the map to be continuous,
and possibly more. On the other hand, we say the f is an open map if the image
of an open set in X is open in Y . Here, we see that X has at least as many and
potentially more open sets as it needs for f to be open. If f is bicontinuous, the
number of open sets in X and Y is “just right” for f . Goldilocks would be proud.

Definition 12. Let X and Y be topological spaces, and let f : X → Y be a
surjective function. We say that Y has the quotient topology with respect to f if

V ⊂ Y is open ⇔ V = f(U) for some open U ⊂ X.

the open sets is Y are exactly the images of the open sets in Y .
Now suppose that X is a topological space, Y is any set, and f : X → Y is a

surjective function. We may define a topology on Y by declaring a subset of Y to
be open if and only if its preimage in X is open.

One way the occurs is by creating an equivalence relation on X. That is, we
partition X is disjoint subsets which cover X. Two elements from X are considered
equivalent if the belong to the same set in the partition; these sets are called
equivalence classes. Then, we view the set of equivalence classes as a set in its own
right. These are the details.

Definition 13. Let X be a set and let C be a collection of subsets of X. We say
that C is a partition of X if

(P1) If C1, C2 ∈ C and C1 6= C2, then C1 ∩ C2 = ∅;
(P2) ∩C = X.

The members of C are called blocks.
Let C be a partition of X. Let x1, x2 ∈ X, we say that x1 is equivalent to x2,

and write x1 ≡ x2, if x1, x2 ∈ C for some C ∈ C.
Let a ∈ X. The equivalence class of a is the set

a = {x ∈ X | a ≡ x}.
The quotient of X by C is

X = {x | x ∈ X}.

Thus X is the set of equivalence class. There is a natural function from X to X,
given by sending a point x to the block that it is in:

β : X → X given by β(x) = x.

If X is a topological space, we then impose the quotient topology on X.
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9. Convergence

Definition 14. Let X be a topological space and let (xn) be a sequence in X. We
say that (xn) converges to L ∈ X if, for every neighborhood V of L there exists
N ∈ N such that xn ∈ V whenever n ≥ N .

Example 3. Let I = (0,∞). The function exp : R→ I given by exp(x) = ex is a
homeomorphism, so it preserves all topological properties. For example, if x0 is an
boundary point of A ⊂ R, then f(x0) is a boundary point of f(A). If a sequence
(xn) converges to L ∈ R, then the sequence f(xn) converges to f(L) ∈ I.

It may seem odd that the limit of a sequence is not necessary unique in every
space. Next we give a condition that will ensure that the limit of a sequence is
unique.

10. Hausdorff Spaces

It may seem odd that the limit of a sequence is not necessary unique in every
space.

Example 4. Consider the “bug-eyed” line segment, constructed at follows. Let
X = (0, 1] ∪ {a, b}. Declare a subset U of X to be open if their exists an open set
V in R such that

U =

{
X ∩ (V ∪ {a, b}) if 0 ∈ V ;

X ∩ V if 0 /∈ V .

Then the sequence (xn), where xn =
1

n
, converges to both a and b. The problem

with this space is that the points a and b cannot be “separated”.
We may construct this space using the quotient topology: Let X = {(x, y) ∈

R2 | x ∈ [0, 1] and y ∈ {1, 2}}. Define a relation on X by

(x1, y1) ≡ (x2, y2) ⇔ x1 = x2 and x1 6= 0}.
Then X, with the quotient topology, it the “bug-eyed” line segment.

Definition 15. Let X be a topological space. We say that X is Hausdorff if for
every distinct x1, x2 ∈ X their exists neighborhoods U1 of x1 and U2 of x2 such
that U1 ∩ U2 = ∅.

Proposition 3. Let X be a Hausdorff space and let (xn) be a sequence in X which
converges to L1 and to L2. Then L1 = L2.

Proof. Suppose not. Since X is Hausdorff, there exists neighborhoods of U1 of L1

and U2 of L2 such that U1∩U2 = ∅. Since (xn) converges to L1, there exist N ∈ N
such that n ≥ N implies xn ∈ U1. But then, for n ≥ N , xn /∈ U2. This contradicts
that (xn) converges to L2. �



8

11. Connectedness

A space is connected if it has only one “piece”. We state this formally as follows.

Definition 16. Let X be a topological space.
A separation of X is a pair of nonempty open sets U, V ⊂ X such that U∩V = ∅

and U ∪ V = X.
We say that X is connected if there does not exist a separation of X.
A component of X is a maximal connected subset; that is, it is a connected

subset which is not properly contained in a connected subset.

If we speak of a subset of X being connected, we mean that it is connected as
topological space with the subspace topology. It is clear that a set is connected if
and only if it has exactly one component.

We give some examples.

• A nonempty subset of R is connected if and only if it is a singleton or an
interval.
• Sn is connected unless n = 0 (in which case S0 is a set containing two

points.
• No finite subset of Rn is connected.
• Consider the map f : C → C given by f(z) = z2. Then f−1(B1(0)) is

connected, but f−1(B1(2) has two components.

Proposition 4. Let f : X → Y be continuous, and let A ⊂ X. If A is connected,
then f(A) is connected.

Proof. We use a proof by contrapositive; assume that f(A) is not connected. Then
there exist disjoint open sets V1 and V2 with f(A) ⊂ V1 ∪ V2, with f(A) ∩ V1 6= ∅
and f(a)∩ V2 6= ∅. Let U1 = f−1(V1) and U2 = f−1(V2); since f is continuous, U1

and U2 are open. Since V1 and V2 are disjoint, so are U1 and U2. Moreover, U1 ∩A
and U2 ∩A are nonempty. Finally, A ⊂ U1 ∩ U2. �

Definition 17. Let X be a topological space. We say that X is path-connected
if for every x1, x2 ∈ X, there exists a continuous function γ : I → X such that
γ(0) = x1 and γ(1) = x2.

Proposition 5. If X is path-connected, then X is connected.

Proof. Suppose that X is not connected, and let U1, U2 ⊂ X be disjoint nonempty
open sets which cover X. Let x1 ∈ U1 and x2 ∈ U2. If X is path-connected, there
exists a continuous function γ : I → X such that γ(0) = x1 and γ(1) = x2. The
image of γ is a subset of X which we denote by γ(I). Since γ is continuous and
I is connected, then γ(I) is connected. But γI ∪ U1 and γ(I) ∪ U2 is a separation
of γ(I), so γ(I) cannot be connected; this contradiction implies that X is not
path-connected. �
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12. Compactness

A space is compact if it is not too big, and if it doesn’t have any “holes”. This
may be stated in multiple ways, which are equivalent for “well-behaved” spaces.

Definition 18. Let X be a topological space.
A cover of X is a collection of subsets of X whose union is X.
An open cover of X is a cover consisting of open sets.
A finite cover of X is a cover consisting of finitely many sets.
A subcover of a cover is a subset of the cover whose union is X.
We say that X is compact if every open cover has a finite subcover.

If we speak of a subset of X being compact, we mean that it is compact as
topological space with the subspace topology.

Note that in the phrase “every open cover has a finite subcover”, the word finite
is describing the collection which is the subcover, but the word open is describing
the sets in the cover.

We give some examples.

• Open balls are not compact.
• Closed balls are compact.
• A punctured disk is not compact.
• The entire real line is not compact.

Proposition 6. A compact subset of a Hausdorff space is closed.

Proposition 7. Let f : X → Y be continuous, and let A ⊂ X. If A is compact,
then f(A) is compact.

Proof. Consider an open cover of f(A). The collection of preimages of the sets in
the cover form an open cover of A. Since A is compact, a finite subset of these
cover A. The collection of images of these sets form a finite subcover of the original
cover of f(A). �

Theorem 1. (Heine-Borel Theorem) A subset of Rn is compact if and only if
it is closed and bounded.

We have the following alternate variations of the definition of compactness, which
are equivalent to the standard definition in most cases in which we are interested.

Definition 19. Let X be a topological space.
We say that X is sequentially compact if every sequence in X has a cluster point

in X.
We say that X is limit point compact if every infinite subset of X has an accu-

mulation point in X.

Theorem 2. (Bolzano-Weierstrauss Theorem) A subset of Rn is sequentially
compact if and only if it is closed and bounded.

Corollary 1. A subset of Rn is compact if and only if it is sequentially compact.
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13. Topological Manifolds

Definition 20. Let X be a topological space. We say that X is locally Euclidean
if, for every point x ∈ X, there exists a neighborhood of x which is homeomorphic
to Bn for some n.

A topological manifold is a locally Euclidean Hausdorff space.

If X is locally Euclidean and connected, then the dimension n is constant
throughout the entire space, and is called the dimension of the manifold.

In order to compute with locally Euclidean spaces, we become more specific
about these local homeomorphisms.

Definition 21. Let X be a topological space.
A chart on X is a bijective bicontinuous function ψ : U → Bn, where U ⊂ X is

an open subset of X.
Let ψ1 : U1 → Bn and ψ2 : U2 → Bn be charts on X. The transition function

given by these charts is

ψ2 ◦ ψ−11 : ψ(U1 ∩ U2)→ ψ2(U1 ∩ U2).

We say that ψ1 and ψ2 are compatible if the function

ψ2 ◦ ψ−11 : ψ(U1 ∩ U2)→ ψ2(U1 ∩ U2)

is a homeomorphism.
A collection of charts on X is said to cover X if every point on X is in the domain

of one of the charts in the collection. An atlas on X is a collection of charts on X
which cover X, such that every pair of charts in the collection are compatible.

We say that two atlases are compatible if their union is an atlas.

For a topological manifold, any two atlases are compatible. However, if we wish
to put additional structure on our manifold, this may no longer be the case. For
example, doing calculus on manifolds requires what is known as a differentiable
manifold.

Definition 22. Let X be a topological manifold.
We say that two charts on X are differentiably compatible if the corresponding

transition function is differentiable. A differentiable atlas is an atlas consisting of
differentiably compatible charts.

The set of all differentiable atlases on X is partially ordered by inclusion. A
differentiable structure on X is a maximal atlas with respect to this partial order.

A differentiable manifold is a topological space X together with a differentiable
structure on X.
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14. Riemann Surfaces

A Riemann surface is a topological 2-manifold, together with a complex struc-
ture. Put another way, a Riemann surface is a topology space such that each point
has a neighborhood homoeomorphic to the open unit disk in the complex plane,
such that the transition functions are analytic. We given the details now.

Definition 23. Let X be a topological space, and let ∆ = {z ∈ C | |z| < 1}.
A complex chart on X is a bijective bicontinuous function ψ : U → ∆, where

U ⊂ X is an open subset of X.
Let ψ1 : U1 → ∆ and ψ2 : U2 → ∆ be charts on X. The transition function

given by these charts is

ψ2 ◦ ψ−11 : ψ(U1 ∩ U2)→ ψ2(U1 ∩ U2).

We say that ψ1 and ψ2 are compatible if the function

ψ2 ◦ ψ−11 : ψ(U1 ∩ U2)→ ψ2(U1 ∩ U2)

is analytic.
A collection of charts on X is said to cover X if every point on X is in the domain

of one of the charts in the collection. An atlas on X is a collection of charts on X
which cover X, such that every pair of charts in the collection are compatible.

We say that two atlases are compatible if their union is an atlas. Compatibility is
an equivalence relation on the set of all atlases, and the union of compatible atlas is
again an atlas. Thus the union of all atlases in an equivalence class is the maximal
atlas in the class. A complex structure on X is a maximal atlas.

A Riemann surface is a topological space X together with a complex structure
on X.
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15. Compact Connected Orientable Surfaces

A compact orientable surface is a compact 2-manifold which can be embedded
in R3. Every compact Riemann surface has the topology of a compact orientable
surface. Up to homeomorphism, the topology of a compact connected orientable
surface is completely characterized by a single nonnegative integer, called its genus.
We describe this in more detail.

Let X be a compact connected orientable surface. The genus of X, denoted
g(X) or gX , is (loosely speaking) the number of “holes” it has. This can be made
more precise.

A sphere is S2; this is a compact orientable surface of genus zero.
A torus is an orientable surface which may be created by taking a square, and

identifying opposite sides using the quotient topology. This is a compact orientable
surface of genus one.

Let X and Y be compact connected orientiable surfaces. Their connected sum
of X and Y , denoted X#Y , is the surface which results from removing an open
disk from X and one from Y , and gluing together the two surfaces on the resulting
circular boundaries using the quotient topology. The genus of the resulting space
is given by

g(X#Y ) = g(X) + g(Y ).

Every compact connected orientable surface may be constructed by using con-
nected sums of spheres and tori. Thus, this inductively defines the concept of
genus.

A triangulation of a compact surface is a net of triangles which cover the surface.
Set

• V = the number of vertices;
• E = the number of edges;
• F = the number of faces.

The Euler characteristic of the surface is

χ = V − E + F.

We may relate this to genus as follows. Take two triangulated surfaces, X and
Y , with Euler characteristics χX = VX − EX + FX and χY = VY − EY + FY .
Let Z = X#Y . Note that Z by be formed by removing one face from each of
the surfaces, and gluing together the exposed boundary triangles. This results in
loosing two faces, and identifying two triangles into one. So, VZ = VX + VY − 3,
EZ = EX + EY − 3, and FZ = FX + FY − 2. This results in

χZ = χX + χY − 2.

So, if the genus goes up by 1, the Euler characteristic goes down by 2. Thus, the
genus g of the surface relates to the Euler characteristic via the formula

χ = 2− 2g.
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16. Riemann-Hurwitz Formula

A ramified cover is a nonconstant analytic function f : Y → X between compact
connected Riemann surfaces.

Let f : Y → X be a ramified cover. The degree of such a function is the maximum
cardinality of a fiber over a point in x. Then f is n-to-1 over all but finitely many
points in X. Also, f is injective in a neighborhood of p for all but finitely many
p ∈ Y ; otherwise, f is e-to-1 is a deleted neighborhood of p.

The ramification index of p ∈ Y , denoted e(p) is an integer e such that f is e-to-1
in a neighborhood of p. If e(p) > 1, we say that f is ramified at p, and that p is
a ramification point of f . A branch point of f is the image of a ramification point.
The total ramification of the cover is

ram(f) =
∑
p∈Y

(e(p)− 1).

We wish to use triangulation to relate the genus of Y and X. Consider a trian-
gulation of X which includes all of the branch points as vertices. The preimage of
this triangulation is a triangulation of Y which includes all of the ramified points as
vertices. The branch points of the cover are the points in X which are the images
of the ramified points. The total ramification of the cover is

ram(f) =
∑
p∈Y

(e(p)− 1).

Proposition 8. (Riemann-Hurwitz Formula) Let f : Y → X be a ramified
cover of degree n. Let gY denote the genus of Y and gX denote the genus of X.
Then

gY = 1 + n(gX − 1) +
1

2
ram(f).

Proof. Consider a triangulation of X which includes all of the branch points as
vertices. The preimage of this triangulation is a triangulation of Y which includes
all of the ramified points as vertices. Each face on X lifts to n faces on Y , and
each edge on X lifts to n edges on Y . A vertex on X lifts to n vertices on Y ,
unless the vertex is a branch point. If the vertex x is a branch point, the number
of points in the preimage is less by the amount of ramification over x; that is, if
F = f−1(x) is the fiber over x, then n =

∑
y∈F e(p), so |F | = n−

∑
y∈F (e(p)− 1).

Thus FY = nFX , EY = nEX , and VY = nVX −
∑
y∈Y (e(p)− 1), so

χY = nχX − ram(f) ⇒ 2− 2gY = n(2− 2gX)− ram(f).

Solving for gY gives the result. �

Corollary 2. Let f : Y → C∞ be a ramified cover of degree n. Let g denote the
genus of Y . Then

g = 1− n+
1

2
ram(f).

Proof. Plug gX = 0 into the Riemann-Hurwitz Formula. �
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Example 5. Let f : Y → C∞ be a ramified cover of degree 2 with four branch
points. Find gY .

Solution. We have n = deg(f) = 2. Each of the ramification points p has e(p) = 2,
and there are four of them. So,

g = 1− n+
1

2
ram(f) = 1− 2 +

1

2
(4) = 1.

�

Example 6. Let f : Y → C∞ be a ramified cover of degree 5 with seven ramified
points, each with ramification index 3. Find gY .

Solution. Here, n = 5 and ram(f) = 7(3− 1) = 14, so

g = 1− 5 +
1

2
(14) = 3.

�

Example 7. Let f : Y → C∞ be a ramified cover of degree 5 with branch points
x1, x2, and x3. The points in the fiber over the branch points, and their ramification
indices, are as follows:

• over x1: e(y1,1) = 3, e(y1,2) = 2
• over x2: e(y2,1) = 3, e(y2,2) = 1, e(y2,3) = 1
• over x3: e(y3,1) = 4, e(y3,2) = 1

Find gY .

Solution. The degree is n = 5 and the total ramification is

ram(f) = ((3− 1) + (2− 1) + (3− 1) + (4− 1)) = 8.

Thus

g = 1− n+
1

2
ram(f) = 1− 5 +

1

2
(8) = 0.

�

Example 8. Let f : Y → C∞ be a ramified cover of degree 8 with ten branch
points. Eight of the branch points have fibers with one ramified point of index
three. Two of the branch points have fibers with two ramified points, one of index
three and the other of index four. Find gY .

Solution. The degree is n = 8 and the total ramification is

ram(f) = 8(3− 1) + 2(3− 1) + 2(4− 1) = 26.

So

g = 1− n+
1

2
ram(f) = 1− 8 + 13 = 6.

�
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17. Symmetry Groups

There is one last concept we wish to explore with respect to ramified covers:
we address the issue or what covers of the Riemann sphere exist. We will explore
enough definitions to state Riemann’s Existence Theorem.

This approach begins with a ramified cover f : Y → X, where X = C∞. Remove
all of the branch points from X, and their preimages from Y . Select a “base point”
x0 ∈ X, a create a loop starting at x0 and going around exactly on of the branch
points. Lift this path to a preimage; it will start at one point in the fiber over x0,
and will end in another. If the starting and ending points are different, then we
have discovered a ramified point. To make this idea computational, we need a little
bit of group theory.

Definition 24. Let X be a set. A permutation of X is a bijective function α :
X → X.

The Symmetry group of X is the set of all permutations of X, and is denoted
Sym(X):

Sym(X) = {α : X → X | α is bijective.

The set Sym(X) admits the binary operation of composition, which we view as
a form of multiplication. Given α, β ∈ Sym(X), we may denote the operation of
composition by ◦, as in α ◦ β, or simply by juxtiposition, as in αβ. Also, αn means
α composed with itself n times. We define ε ∈ Sym(X) by ε(x) = x for all x ∈ X.

Composition in SymX satisfies these properties:

(G0) The composition of bijective functions is bijective, so ◦ is closed on Sym.
(G1) Composition is associative: (α ◦ β) ◦ γ = α ◦ (β ◦ γ).
(G2) Composition admits an identity: ε ◦ α = α ◦ ε = α.
(G3) Bijective functions have compositional inverses, given by α(x1) = x2 ⇔

α−1(x2) = x1.

These properties indicate that Sym(X) is a mathematical object known as a group.
Note that if X is finite, the α : X → X is injective if and only if it is surjective.
In the case that X = {1, 2, . . . , n}, we use the notation

Sn = Sym(X).

By enumerating the points in a finite set X, we can identify Sym(X) with Sn. So,
studying Sn suffices for most purposes.

There are two standard ways to specify an arbitrary elements of Sn.

17.1. Direct Notation. This first uses a 2 × n matrix, with the domain points
listed in the top row, and where they go listed in the second row. For example, set

α =

(
1 2 3 4 5 6 7
2 5 1 3 7 6 4

)
.

This indicates that α(1) = 2, α(2) = 5, ..., α(7) = 4. We can plug in points on the
right, such as (

1 2 3 4 5 6 7
2 5 1 3 7 6 4

)
(4) = 3.

Note that in that the entries in the second row must be distinct, or else the function
is not bijective.
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We can multiply two such permutations by composition, which we indicate by
juxtiposition. Note that multiplication is from left to right, as it is function com-
position. For example,(

1 2 3 4 5
5 2 3 1 4

)(
1 2 3 4 5 6 7
2 5 1 3 7 6 4

)
=

(
1 2 3 4 5 6 7
2 4 5 3 7 6 1

)
.

Notice that we automatically expanded the domain of the first entry, a priori in S5,
so as to view it in as a permutation S7 which fixes 6 and 7.

The order in which we multiply permutation matters. That is, composition is
not and associative operation. For example,(

1 2 3
1 3 2

)(
1 2 3
2 3 1

)
=

(
1 2 3
3 2 1

)
, but

(
1 2 3
2 3 1

)(
1 2 3
1 3 2

)
=

(
1 2 3
2 1 3

)
.

Definition 25. Let α ∈ Sym(X).
The support of α is

supp(α) = {x ∈ X | α(x) 6= x}.
The fixed set of α is

fix(α) = {x ∈ X | α(x) = x}.
The members of fix(α) are called fixed points of α.

The orbit of x0 ∈ X under α is

orbα(x0) = {x ∈ X | αn(x0) = x for some x ∈ N}.
The length of an orbit is its cardinality. An orbit is trivial if it has length one.

Thus we see that

x0 ∈ fix(α)⇔ x0 /∈ supp(α)⇔ |orbα(x)| > 1.

For example, let

α =

(
1 2 3 4 5 6 7
2 5 7 4 1 6 3

)
.

Then fix(α) = {4, 6}, supp(α) = {1, 2, 3, 5, 7}, orbα(1) = {1, 2, 5}, and orbα(3) =
{3, 7}. The trivial orbits are those containing 4 and 6.

The orbits of α form a partition of its domain. Seeing the orbits gives us a
thorough idea of how the permutation behaves.

17.2. Disjoint Cycle Notation.

Definition 26. A cycle is a permutation whose support consists of one orbit. The
length of the cycle is the length of this orbit.

We say that two cycles are disjoint if their supports have empty intersection.

Cycle notation writes as cycles as a finite ordered sequence, usually without
commas, although in our definition we will use commas. Precisely, let

α = (x1, x2, . . . , xk).

Then

α(y) =


xi+1 if y = xi and i < k;

x1 if y = xk;

y if y 6= xi for any i.

So, if a number is not listed in the cycle, that number is fixed by the permutation.
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Example 9. For example:

•
(

1 2 3 4 5
2 5 4 1 3

)
= (1 2 5 3 4)

•
(

1 2 3 4 5 6 7
2 3 4 5 6 7 1

)
= (1 2 3 4 5)

Note that (1 3 5) = (3 5 1) = (5 1 3). It is standard to place the lowest
number in a cycle in the first position.

Proposition 9. Disjoint cycles commute. Every permutation can be written as a
product of disjoint cycles.

It is common to write permutations as a product (composition) of disjoint cycles.

Example 10. For example:

•
(

1 2 3 4 5
2 3 1 5 4

)
= (1 2 3)(4 5)

•
(

1 2 3 4 5 6 7
2 5 7 4 1 6 3

)
= (1 2 5)(3 7)

In the second case, since 4 and 6 are fixed, they are usually not written.

We can multiply cycles to put the result in disjoint cycle notation. Note that,
since disjoint cycles commute, (1 2 3)(4 5) = (4 5)(1 2 3). It is standard to place
the disjoint cycles in increasing order of the lowest member of each cycle’s support.

Example 11. Let α = (1 2 5)(2 9 4)(1 3 6). Write α in disjoint cycle notation.

Solution. We start with 1, which we plug into the right side (remember, these cycles
are functions). Proceed from right to left, asking in each case what the cycle does
to the number.

(1) 1 7→ 3 7→ 3 7→ 3
(3) 3 7→ 6 7→ 6 7→ 6
(6) 6 7→ 1 7→ 1 7→ 2
(2) 2 7→ 2 7→ 9 7→ 9
(9) 9 7→ 9 7→ 4 7→ 4
(4) 4 7→ 4 7→ 2 7→ 5
(5) 5 7→ 5 7→ 5 7→ 1

When we get back to where we started, we close off the resulting cycle. Here, we
see that

α = (1 3 6 2 9 4 5).

�
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18. Path Lifting

Let I = [0, 1] and let X be a topological space.
A path in X is a continuous function γ : I → X. We call γ(0) the initial point,

and we call γ(1) the terminal point, of the path.
A loop in X is a path γ : I → X such that γ(0) = γ(1). In this case, we call γ(0)

the basepoint of the loop.
Let f : Y → X be a ramified cover, and let γ̃ : I → Y be a path in Y . Then

f ◦ γ̃ is a path in X.
We wish to start with a path in the base space. Let γ : I → X be a path in

X from x0 to x. Let y0 be any point in the preimage of x0. Then there exists a
unique path γ̃ : I → Y such that γ̃(0) = y0, and f ◦ γ̃ = γ. We call γ̃ a lift of γ,
and this property is called unique path lifting.

Homotopies also lift in the following sense: if γ1 is homotopic in X to γ2, then
γ̃1 is homotopic to γ̃2.

We focus on ramified covers whose base space is the Riemann sphere. We use
path lifting to detect the index of ramification points in Y .

Let f : Y → X, where X = C∞, be a ramified cover. Let B ⊂ X denote the
set of branch points of f , and let R = f−1(B). Set Y ◦ = Y r R, X◦ = X r B,
and f◦ = f �Y ◦ . Now Y ◦ may be covered with open sets that map injectively and
bicontinuously onto X; such a function is called a topological cover. The fiber over
every point in X◦ is a consistent n, where n = deg(f).

Let x0 ∈ X◦; we call x0 a basepoint. Enumerate the fiber over x0; that is,
there are exactly n points over x0, and we give each of them a number thusly: let
y1, . . . , yn denote the points in the fiber over x0. If λ is a loop based at x0, and we
lift λ to start at (for example) y1, then the lift will terminate at another point in
the fiber; it may terminate at y1, but it may terminate at yi for some i 6= 1. By
lifting λ to different each point in the fiber, and noting the endpoint, we obtain a
permutation of the fiber which may be written in cycle notation. We will denote
this permutation by g. Then g ∈ Sn, where n = deg(f).

Suppose that λ is a loop based at x0 which wraps once, clockwise, around a
single branch point. The disjoint cycle decomposition of the corresponding per-
mutation g indicates the ramification above the branch point. For example, if
g = (1)(2 3)(4 5)(6 7 8), the fiber over the branch point has four points, one of
which is unramified, two which are ramified to index 2, and one which is ramified
to index 3.

Let x1, . . . , xr be the branch points of the cover. Let λj denote a loop on X◦

which starts at x0 and goes around xj clockwise exactly once, and does not go
around any other branch point. We number these branch points so that it is
possible to construct a single clockwise loop starting at x0 and passing through the
xj ’s, in order. Path lifting of each of these loops gives a permutation of the fiber
over x0, which we denote by gj . Let ~g = (g1, g2, . . . , gr) be the ordered r-tuple
of permutations obtained in this way. We call ~g a branch cycle description of the
cover.

If we concatenate consecutive paths and lift the concatenation, we will achieve a
different permutation of the fiber over the basepoint. We may compute this permu-
tation by multiplying the corresponding permutations of the paths we concatenated.
Thus

∏n
j=1 gj is the product of the branch cycle description.
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It is clear that if the path is contractible, then its corresponding permutation is
the identity ε ∈ Sn. However, a clever observer will notice that the concatenation of
the paths λ1 through λr is null-homotopic on the punctured Riemann sphere, since
all of the branch points are inside this loop. The loop can be pulled backwards over
the back side of the sphere to contract it to the basepoint. Thus,

n∏
j=1

gj = ε.

We say that a subset of Sn acts transitively on {1, . . . , n} if it is possible to get
from i to j by some sequence of the permutations in the set, for any i and j. Any
branch cycle description acts transitively if the cover is connected. This is because,
if Y is connected, it is possible to draw a path between any two points in the fiber
over x0, whose image is a path in X◦. and it can be shown that any loop in X◦

can be obtained by concatenation in λj ’s.
It turns out that every cover which can be described in this way exists. We finish

by stating this.

Theorem 3. (Riemann’s Existence Theorem)
Let n be a position integer. Let g1, . . . , gr ∈ Sn, which act transitively, such that∏n
j=1 gj = ε. Let x1, . . . , xr ∈ C∞ be distinct. Then there exists a connected cover

f : Y → C∞ whose branch points are x1, . . . , xr, whose ramification is described by
~g = (g1, . . . , gr).

Example 12. Consider a cover f : Y → C∞ with branch cycle description

~g = ((1 2 3)(4 5), (2 4), (2 5 1), (1 3)(2 4), g5).

(a) Find g5.
(b) Find the genus of Y .

Solution. Since ~g is a branch cycle description, the ordered product of the permu-
tation is ε, so g5 is the inverse of the product of the rest of the terms. But

4∏
j=1

gj = (1 2 3)(4 5)(2 4)(2 5 1)(1 3)(2 4) = (2 3 5).

So g5 = (2 3 5)−1 = (2 5 3).
We use the Riemann-Hurwitz formula to compute the genus. The sum of the

ramification is ram(f) = 2 + 1 + 1 + 2 + 1 + 1 = 8, so

gY = 1− n+
1

2
ram(f) = 1− 5 +

1

2
(8) = 0.

�
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19. Exercises

Problem 1. Consider the rational function

f(z) =
z4 − 1

6z2 − 10
.

(a) Find the fiber over 0.
(b) Find the fiber over 1.
(c) Find the fiber over ∞.

Problem 2. Find the unique monic fifth degree polynomial f : C∞ → C∞ which
has ramification points at ±1, ±i, and ∞ and fixes 0. Find the fiber of f over 0.

Problem 3. Let f : C∞ → C∞ be given by f(z) = z3 − 8z2 + 5z − 40.

(a) Find the ramification points of f .
(b) Find the branch points of f .
(c) Find the fiber over 0.

Problem 4. Let f : C∞ → C∞ satisfy:

• deg(f) = 3;
• f is ramified over 2, −2, and ∞, and no where else;
• f(0) = 11;
• f(1) = 0.

(a) Write f as a polynomial in standard form ax3 + bx2 + cx+ d.
(b) Find the branch points of f .
(c) Find the fiber over 0.

Problem 5. Analyze the polynomial function

f : C∞ → C∞ given by f(z) = z3 − 3z2 − 45z.

(a) Find the degree of f .
(b) Find the ramification points of f .
(c) Find the ramification index of each ramification point of f .
(d) Find the branch points of f .

Problem 6. Analyze the polynomial function

f : C∞ → C∞ given by f(z) = z4 − 4z3 + 2z2 − 12z + 1.

(a) Find the degree of f .
(b) Find the ramification points of f .
(c) Find the ramification index of each ramification point of f .
(d) Find the branch points of f .

Problem 7. Analyze the rational function

f : C∞ → C∞ given by f(z) = z +
1

z
.

(a) Find the degree of f .
(b) Find the ramification points of f .
(c) Find the ramification index of each ramification point of f .
(d) Find the branch points of f .

Problem 8. Find a rational function f of degree 3 which is ramified to index 2 at
z = 0, 2 at z = 1, and 3 at z =∞. Find the branch points of your function. What
is the fiber over ∞?
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Problem 9. Find a rational function g of degree 1 which maps 0 to i, 1 to −i, and
∞ to 5.

Problem 10. Find a rational function f of degree 3 which is ramified to index 2
at z = i, 2 at z = −i, and 3 at z = 5. What are the branch points? What is the
ramification index of ∞? What is the fiber over ∞?

Problem 11. Find a rational function f of degree 6 which is ramified to index 3
at z = i and at z = −i, above the same branch point w = 0, and is ramified to
index 6 at infinity above infinity.

Problem 12. Find the following rational functions f of degree 10.

(a) f is ramified to indices 1, 2, 3, and 4 at four points above 0.
(b) f is ramified to indices 1, 2, 3, and 4 at four points above z0 ∈ C.
(c) f of degree 10 which is ramified to indices 1, 2, 3, and 4 at four points

above ∞.

Problem 13. Find a rational function f of degree 3 which is ramified at z = 1
to index 2 and maps 1 to 2. Find another rational function g of degree 2 which
is ramified at 2. Compute g ◦ f and find its ramification points, their indices, and
their branch points.

Problem 14. Let f : Y → C∞ be a ramified cover of degree 2 with four branch
points. Find gY .

Problem 15. Let f : Y → C∞ be a ramified cover of degree 5 with seven ramified
points, each with ramification index 3. Find gY .

Problem 16. Let f : Y → C∞ be a ramified cover of degree 5 with branch points
x1, x2, and x3. The points in the fiber over the branch points, and their ramification
indices, are as follows:

• over x1: e(y1,1) = 3, e(y1,2) = 2
• over x2: e(y2,1) = 3, e(y2,2) = 1, e(y2,3) = 1
• over x3: e(y3,1) = 4, e(y3,2) = 1

Find gY .

Problem 17. Let f : Y → C∞ be a ramified cover of degree 8 with ten branch
points. Eight of the branch points have fibers with one ramified point of index
three. Two of the branch points have fibers with two ramified points, one of index
three and the other of index four. Find gY .

Problem 18. Let f : Y → X be a ramified cover, where X = C∞. Suppose f has
branch cycle description

~β = ((1 4)(1 3), (1 2), β3).

(a) Find β3.
(b) Find gY .
(c) How many branch points does X have? How many ramified points does Y

have? Could f be a polynomial? A rational function?
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Problem 19. Let f : Y → X be a ramified cover, where X = C∞. Suppose f has
branch cycle description

~β = ((1 2 3), (2 3 4), β3).

(a) Find β3.
(b) Find gY .
(c) How many branch points does X have? How many ramified points does Y

have? Could f be a polynomial? A rational function?

Problem 20. Let f : Y → X be a ramified cover, where X = C∞. Suppose f has
branch cycle description

~β = ((1 2 3 4)(5 6), (2 5), (1 3 5)(2 4 6), (1 2 3 4 5 6), β5).

(a) Find β5.
(b) Find gY .
(c) How many branch points does X have? How many ramified points does Y

have? Could f be a polynomial? A rational function?

Problem 21. Let f : Y → X be a ramified cover, where X = C∞. Suppose f has
branch cycle description

~β = ((1 2 3 4)(5 6)(7 8), (2 4)(1 3 7), (5 6), (1 3 4)(5 6), (1 2 4)(3 7), β6).

(a) Find β6.
(b) How many components does Y have? How many branch points does X

have? How many ramified points does Y have in each component?
(c) Find the genus of each component of Y .
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